clear all set more off Data encode date, gen(Date) //converting from string to long tsset Date **Line Graphs twoway line closem Date **Series at first difference gen dclosem=d.closem **line graph twoway line dclosem Date **correlograms corrgram closem // Q testing autocorrelation **Ac and PAC for stationary data ac dclosem pac dclosem **test for stationary pperron dclosem dfuller dclosem // stationary **Second difference gen d2closem = d2.closem dfuller d2closem **estimation arima d2closem, arima(#,#,#) **Natural log gen lnclosem=ln(closem) twoway (tsline lnclosem) //Making data smooth gen lnclosec=ln(closec) twoway (tsline lnclosec) **ARIMA for motor arima lnclosem, arima(0,1,0) //BIC = 15.70819 arima lnclosem, arima(1,1,1) //BIC = 19.54651 arima lnclosem, arima(0,1,1) //BIC = 17.28894 arima lnclosem, arima(1,1,0) //BIC = 17.51754 arima lnclosem, arima(3,1,1) //not feasible arima lnclosem, arima(2,1,0) //BIC= 18.27006 arima lnclosem, arima(2,1,1) //BIC= 15.44103 arima lnclosem, arima(2,1,2) //not feasible arima lnclosem, arima(1,1,2) //not feasible arima lnclosem, arima(0,1,1) //BIC = 17.52049 //After trying all the possibilities we get that arima (0,1,0) because here BIC is less **ARIMA arima d2closem, arima(0,1,1) //BIC= 109.6398 arima d2closem, arima(0,1,0)//BIC=112.185 arima d2closem, arima(0,1,2)//BIC=107.537 arima d2closem, arima(0,1,3)//BIC=109.6144 arima d2closem, arima(0,1,4)//BIC=111.5545 arima d2closem, arima(0,1,5)//BIC=108.3522 arima d2closem, arima(0,1,6)//BIC=113.9582 arima d2closem, arima(0,1,7)//BIC=116.0138 arima d2closem, arima(1,1,0)//BIC=111.2233 arima d2closem, arima(1,1,1)//BIC=108.4113 arima d2closem, arima(1,1,2)//BIC = 111.694 arima d2closem, arima(1,1,3)//not feasible arima d2closem, arima(2,1,0)//BIC = 112.672 arima d2closem, arima(2,1,1)//BIC = 110.4334 arima d2closem, arima(2,1,1)//not feasible arima d2closem, arima(3,1,0)//BIC = 113.6486 arima d2closem, arima(3,1,1)//BIC = 111.8576 arima d2closem, arima(3,1,2)//not feasible so final that ARImA for motor will be (0,1,2) ***Log data **Predicting residuals predict error2, resid **WHite noise twoway(tsline error2) wntestq error2 //p value is 0.3801 that is gretaer than 0.05 so fail to reject so good to go ****Forecasting tsappend, add(3) predict fclosem2, y dynamic(y(2023)) tsline lnclosem, fclosem2 ****double difference data **Predicting residuals predict error3, resid **WHite noise twoway(tsline error3) wntestq error3 //p value is 0.8255 that is gretaer than 0.05 so fail to reject so good to go ****Forecasting tsappend, add(3) predict fclosem3, y dynamic(y(2023)) twoway (tsline closem fclosem3) twoway (tsline d2closem fclosem3)